- **5.** A rocket accelerates straight up by ejecting gas downwards. In a small time interval Δt , it ejects a gas of mass Δm at a relative speed u. Calculate KE of the entire system at $(t + \Delta t)$ and t and show that the device that ejects gas does work $= \frac{1}{2} \Delta m u^2$ in this time interval (neglect gravity).
 - Sol. Let mass of rocket at any time t = M

Velocity of rocket at any time t = v

 Δm is the mass of gas ejected in time interval Δt

$$(KE)_{z+\Delta t} = \frac{1}{2}(M - \Delta m)(v + \Delta v)^2 + \frac{1}{2}\Delta m(v - u)^2$$

$$= \frac{1}{2}\left[(M - \Delta m)\left(v^2 + \Delta v^2 + 2v\Delta v\right) + \Delta m\left(v^2 + u^2 - 2uv\right)\right]$$

$$(KE)_{\tau+\Delta t} = \frac{1}{2}\begin{bmatrix}Mv^2 + M\Delta v^2 + 2Mv\Delta v - \Delta mv^2\\ -\Delta m\Delta v^2 - 2v\Delta m\Delta v + \Delta mv^2 + \Delta mu^2 - \Delta mu^2 - 2uv\Delta m$$

$$(KE)_{t+\Delta t} = \frac{1}{2}Mv^2 + Mv\Delta v + \frac{1}{2}\Delta mu^2 - uv\Delta m$$

[neglecting the very small terms $M\Delta v^2, \Delta m\Delta v^2, 2v\Delta m\Delta v$ contains Δv^2 and $\Delta m\Delta v$]

$$(KE)_{\tau} = \frac{1}{2}Mv^2$$

$$(KE)_{t+\Delta t} - (KE)_t = \frac{1}{2}Mv^2 + Mv\Delta v + \frac{1}{2}\Delta mu^2 - uv\Delta m - \frac{1}{2}Mv^2$$
$$\Delta K = \frac{1}{2}\Delta mu^2 + v\left(M\Delta v - u\Delta m\right)$$

By Newton's third law,

Reaction force on Rocket (upward) = Action force by burnt gases (downward)

$$M\frac{dv}{dt} = \frac{dm}{dt}|u|(::F = ma)$$

Or
$$M\Delta v = \Delta mu \Rightarrow M\Delta v - u\Delta m = 0$$

Substitute this value in (i)

$$K = \frac{1}{2}u^2 \Delta m$$

By work energy theorem $\Delta\left(KE\right)=WD$

Or
$$W=\Delta K=\frac{1}{2}\Delta mu^2$$
.